首页> 外文OA文献 >Simulated Quantum Annealing Can Be Exponentially Faster than Classical Simulated Annealing
【2h】

Simulated Quantum Annealing Can Be Exponentially Faster than Classical Simulated Annealing

机译:模拟量子退火可以比经典更快速地进行   模拟退火

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Simulated Quantum Annealing (SQA) is a Markov Chain Monte-Carlo algorithmthat samples the equilibrium thermal state of a Quantum Annealing (QA)Hamiltonian. In addition to simulating quantum systems, SQA has also beenproposed as another physics-inspired classical algorithm for combinatorialoptimization, alongside classical simulated annealing. However, in many casesit remains an open challenge to determine the performance of both QA and SQA.One piece of evidence for the strength of QA over classical simulated annealingcomes from an example by Farhi, Goldstone and Gutmann . There a bit-symmetriccost function with a thin, high energy barrier was designed to show anexponential seperation between classical simulated annealing, for which thermalfluctuations take exponential time to climb the barrier, and quantum annealingwhich passes through the barrier and reaches the global minimum in poly time,arguably by taking advantage of quantum tunneling. In this work we apply acomparison method to rigorously show that the Markov chain underlying SQAefficiently samples the target distribution and finds the global minimum ofthis spike cost function in polynomial time. Our work provides evidence for thegrowing consensus that SQA inherits at least some of the advantages oftunneling in QA, and so QA is unlikely to achieve exponential speedups overclassical computing solely by the use of quantum tunneling. Since we analyzeonly a particular model this evidence is not decisive. However, techniquesapplied here---including warm starts from the adiabatic path and the use of thequantum ground state probability distribution to understand the stationarydistribution of SQA---may be valuable for future studies of the performance ofSQA on cost functions for which QA is efficient.
机译:模拟量子退火(SQA)是一种马尔可夫链蒙特卡洛算法,用于对量子退火(QA)哈密顿量的平衡热态进行采样。除了模拟量子系统,SQA还被提议为另一种受物理学启发的经典算法,用于组合优化,以及经典的模拟退火。然而,在许多情况下,确定QA和SQA的性能仍然是一个开放的挑战。Farhi,Goldstone和Gutmann的例子证明了QA优于经典模拟退火的强度。设计了具有薄的高能垒的位对称成本函数,以显示经典模拟退火和量子退火之间的指数分离,经典模拟退火的热波动花费指数时间爬升壁垒,而量子退火则穿过壁垒并在多边形时间内达到全局最小值可以说是利用量子隧道技术在这项工作中,我们使用比较方法来严格证明SQA的马尔可夫链有效地采样了目标分布,并在多项式时间内找到了该峰值成本函数的全局最小值。我们的工作为日益增长的共识提供了证据,即SQA至少继承了QA隧道技术的某些优势,因此QA不可能仅通过使用量子隧道来实现超经典计算的指数级加速。由于我们仅分析特定模型,因此该证据不是决定性的。但是,此处应用的技术-包括从绝热路径开始的热启动和使用量子基态概率分布来了解SQA的平稳分布-可能对将来研究QA在成本函数有效的成本函数上的性能很有用。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号